
Quantum Complexity Theory

Wim van Dam
HP Labs – MSRI – UC Berkeley

SQUINT 3
June 16, 2003

Complexity Theory

Complexity theory investigates what resources
(time, space, randomness, etc.) are required to
solve certain problems.

Typically, a problem is defined as a language
L⊆{0,1}* of bit strings. We know how to solve
the problem if we can decide between x∈L and
x∉L for every possible x∈{0,1}*.

The complexity is expressed as the relation
between the length |x| of the input, and the
amount of resources required to answer “x∈L?”

P: Classical Polynomial Time

The most relevant complexity class is P, which
contains all problems that can be solved with
polynomial time complexity (classically):
L∈P if and only if there exists a program
that decides x∈L? in less than p(|x|) time steps
for all x, where p is a polynomial function.

P contains those problems that we consider ‘tractable’
or ‘efficiently solvable’ on a deterministic machine.
Examples: linear equations, primality testing…

Quantum-P or BQP

“Bounded error, quantum polynomial time”:
the class of problems that can be solved (with
success probability at least 2/3) in polynomial
time on a quantum computer.
(The 2/3 is arbitrary: by repeating the algorithm
we can amplify the success rate to 1–ε.)

BQP is the crucial quantum complexity class.

BPP is bounded error, classical polynomial time.
Question: is BQP bigger than BPP?

NP and Its Importance

NP stands for Nondeterministic Polynomial time.

A problem L is in NP if and only if for every x∈L
there exists a certificate cx that allows one to
efficiently prove that indeed x∈L.

Traditional examples are optimization problems:
- Traveling Salesman Problem (TSP): Given n
cities and their connections, is there a trajectory
that visits all cities in less than T kilometers?
- If so, the trajectory is the certificate of that fact.

Boolean Formulas

A formula φ:{0,1}n→{0,1} in n Boolean variables
like φ(x1,…,xn) = (x1≠x3)∧(x7∨¬x1)∨…

SAT contains all formulas that are satisfiable,
φ∈SAT if and only if ∃x∈{0,1}n: φ(x)=1.

Clearly, the SAT problem is in NP.
Moreover, SAT is ‘NP-complete’: if we have
a polytime algorithm to solve SAT, then we
are able to solve all NP problems in polytime.

The Polynomial Hierarchy

For Boolean functions φ(x) we can also consider
the universal quantifier question: “∀x: φ(x)?”
This gives the class co-NP, which has languages
for which there are efficient certificates if x∉L.

By extending the sequence of quantifiers, we get
problems like ∃x’’ ∀y’ ∃x’ ∀y ∃x: φ(x,x’,x’’,y,y’) ?
The class ΣkP has problems with k ∃-quantifiers.

The “polynomial hierarchy” is the union of all Σk:

U
,...2,1,0k

k
=

Σ= PPH

PSPACE

Problems that have polynomial space complexity
(but potentially exponential time complexity) are
the problems that are in PSPACE.

P, NP, and the whole polynomial hierarchy are
all in PSPACE (by reusing the memory).

Embarrassing state-of-the-art: we do not know
how to prove that PSPACE is bigger than P.
(We have almost no tools to prove that a problem
cannot be solved in polynomial time.)

Proven vs. Believed Results

For the classical complexity classes we know that:

P ⊆ NP=Σ1P ⊆ Σ2P ⊆ Σ3P … ⊆ PH ⊆ PSPACE
⊆ ⊆BPP

It is generally believed that all these classes are
different from each other, except P vs. BPP.

Actually proving one of these difference would
be a major scientific advance.
(In the case of P vs. NP, worth 1,000,000 $.)

Place of BQP

Quantum computers are at least as powerful
as classical computers, hence P ⊆ BQP.

A quantum circuit can be simulated within
polynomial space: BQP ⊆ PSPACE.

Proving P ≠ BQP, implies proving P ≠ PSPACE,
which would be a major breakthrough.
(Claims that this has been done are wrong.)

Is BQP Bigger than P?

Factoring, discrete logarithms and solving Pell’s
equation are all in BQP, and are not known to
be in P, despite many, many intelligent efforts.

They are known or expected to be in NP, but
they are unlikely to be NP-complete.

The problem of simulating quantum mechanics
(≈ predicting quantum circuits) seems unlikely
to fit in P, but -again- we have no proof of this.

Oracle Results

Problems that concern an outside function
(or ‘black box’) are called ‘oracle problems’.

In such ‘relativized settings’, we often can
prove differences between complexity classes
like PO ≠ NPO ≠ PSPACEO.

The results of Simon and Shor’s period finding
give oracles for which BPPO ≠ BQPO.

How Big Could BQP Be?

Thus far, everything we know about BQP fits
in the 2nd level Σ2P of the polynomial hierarchy.

Many researchers consider it unlikely that BQP
contains all NP problems.

Attempts to compute the Permanent problem on
a quantum computer are all-but-doomed, because
such an algorithm would solve PH problems:
PH⊆BQP has unlikely consequences (“collapses
in the hierarchy…”)

What Could BQP Be?

P=BQP would be a very unexpected result in
classical computing.

NP⊆BQP seems too good to be true.

Likely, BQP does not care about the polynomial
hierarchy and it contains problems that are
somewhat outliers in complexity theory, such as
problems in number theory, graph-isomorphism,
shortest vector problems, approximate counting…

PSPACE

PHNP

Perverse Subtlety of BQP

PBQP

Quantum mechanics seems to favor number
theoretic problems over optimization problems?

